Du er ikke logget ind
Beskrivelse
In the Riemann zeta function ?(s), the non-real zeros or Riemann zeros, denoted ?, play an essential role mainly in number theory, and thereby g- erate considerable interest. However, they are very elusive objects. Thus, no individual zero has an analytically known location; and the Riemann - pothesis, which states that all those zeros should lie on the critical line, i.e., 1 haverealpart ,haschallengedmathematicianssince1859(exactly150years 2 ago). For analogous symmetric sets of numbers{v}, such as the roots of a k polynomial,the eigenvalues of a ?nite or in?nite matrix,etc., it is well known that symmetric functions of the{v} tend to have more accessible properties k than the individual elements v . And, we ?nd the largest wealth of explicit k properties to occur in the (generalized) zeta functions of the generic form ?s Zeta(s,a)= (v +a) k k (with the extra option of replacing v here by selected functions f(v )). k k Not surprisingly, then, zeta functions over the Riemann zeros have been considered, some as early as 1917.What is surprising is how small the lite- ture on those zeta functions has remained overall.We were able to spot them in barely a dozen research articles over the whole twentieth century and in none ofthebooks featuring the Riemannzeta function.So the domainexists, but it has remained largely con?dential and sporadically covered, in spite of a recent surge of interest. Could it then be that those zeta functions have few or uninteresting pr- erties?Inactualfact,theirstudyyieldsanabundanceofquiteexplicitresults.