Du er ikke logget ind
Beskrivelse
During an aerospace engineer's undergraduate studies, he or she will attend classes in aerodynamics, thermodynamics, structures, stability and control, dynamics, design, propulsion, and computer science, along with the related courses in mathematics, physics, statistics, and chemistry required to understand the material. Upon graduation, the new engineer will have acquired a basic knowledge of how to build an aerospace vehicle. What only comes through experience, however, is the understanding of the inevitable imperfect process through which an aerospace vehicle is built. This is the adventure of turning a basic concept into functional hardware. Engineers working on a project must often deal with ambiguous situations. They are routinely asked by management to provide risk assessments of a project, yet even after careful analysis uncertainties remain. The project must be accomplished within finite limits of time and money. The question an engineer answers is whether the solution to potential problem is worth the cost and schedule delay, or if the solution might actually be worse than the problem it is meant to solve. Review protocols are established to ensure that an unknown has not been overlooked. But these cannot protect against an unknown unknown.