Du er ikke logget ind
Beskrivelse
Whydowelookatsomethingsandthinktheyarebeautifulwhileotherthingsdo notappearestheticallypleasingtous?Thisisaquestionthathasalwaysinterested mankind. Oneanswerisgivenbythefollowingquotationfromanearlypresidentof theCollegeofNewJersey(nowPrincetonUniversity): "Beautyisfoundinimmaterialthingslikeproportionoruniformity...calledbyvariousnamesofregularity,order,uniformity,symmetry, 1 proportion,harmony,etc. "...JonathanEdwards Symmetrynotonlyprovidesthenaturalharmonythatmakessomethingappear beautifultous,butalsoisofgreatvaluetosciencebecauseitdictatesthephysical traitsofmanyobjects. Natureitselfseemstolovebeautysinceatomstendtoself? assemble into shapes with speci?c symmetry and crystals grow in geometric lattices. Inmanycases,ifweknowthesymmetryofsomethingwecanpredict someofitsimportantpropertieswithouthavingtoresorttoexperimentationor complicatedcalculations. One area where the concept of symmetry plays an important role is that of crystalline solids. Crystals, by their very nature, exhibit speci?c symmetries. Crystallinematerialshavemanyimportantapplicationsindevicesbasedontheir electronic,optical,thermal,magnetic,andmechanicalproperties.Solidstatep- sicistsandchemists,aswellasmaterialscientistsandengineers,havedeveloped rigorousquantumtheoreticalmodelstodescribethesepropertiesandsophisticated measurementtechniquestoverifythesemodels. Manytimes,however,inscreeningmaterialsforanewapplicationitisuseful to be able to quickly and easily determine if a speci?c material will have the appropriatepropertieswithoutmakingdetailedcalculationsorexperiments. This canbedonebyanalyzingthesymmetrypropertiesofthematerial. Themathema- calformalismthathasbeendevelopedtoaccomplishthisiscalledgrouptheory. Thesymmetrypropertiesofacrystalcanbedescribedbyagroupofmathematical 1 J. Edwards,WorksofJonathanEdwards(BannerofTruthTrust,Edinburgh,1979) v vi Preface operations. Thenusingsimplegrouptheoryprocedures,thephysicalpropertiesof thecrystalcanbedetermined. Duringthe45yearsIhavebeeninvolvedinteachingandresearchinvarious areasofsolidstatephysics,Ihavemadeextensiveuseoftheconceptsofgroup theory. YetIhavebeensurprisedathowlittleemphasisthistopicreceivesinany formaleducationalcurriculum.Generally,astudentstudyingsolidstatephysicsor chemistrywillbeexposedtocrystalstructuresearlyinthesemesterandthenhave nofurtherexposuretocrystalsymmetryuntilsomespecialtopicsuchasnonlinear opticsisdiscussed. Thisbookfocusesonthesymmetryofcrystalsandthedescr- tionofthissymmetrythroughtheuseofgrouptheory. Althoughspeci?cexamples are provided of using this formalism to determine both the microscopic and macroscopicpropertiesofmaterials,theemphasisisonthecomprehensive,per- sivenatureofsymmetryinallareasofsolidstatescience. Theintentofthebookistobeareferencesourceforthosedoingresearchor teachinginsolidstatescienceandengineering,oratextforaspecialtycoursein grouptheoryappliedtothepropertiesofcrystals. Tucson,AZ RichardC. Powell June2010 Contents 1 SymmetryinSolids...1 1. 1 Symmetry...1 1. 2 CrystalStructures...4 1. 3 SymmetryinReciprocalSpace...15 1. 4 Problems...24 References...24 2 GroupTheory...25 2. 1 BasicConceptsofGroupTheory...27 2. 2 CharacterTables...31 2. 3 GroupTheoryExamples...40 2. 3. 1 C PointGroup...40 3v 2. 3. 2 O PointGroup...45 h 2. 4 GroupTheoryinQuantumMechanics...47 2. 5 Problems...52 References...53 3 TensorPropertiesofCrystals...55 3. 1 First-RankMatterTensors...57 3. 2 Second-RankMatterTensors...62 3. 3 Third-RankMatterTensors...68 3. 4 Fourth-RankMatterTensors...73 3. 5 Problems...77 References...77 4 SymmetryPropertiesofPointDefectsinSolids...79 4. 1 EnergyLevelsofFreeIons...79 4. 2 CrystalFieldSymmetry...85 4. 3 EnergyLevelsofIonsinCrystals...87 vii viii Contents 4. 4 Example:d?Electrons...95 4. 5 Example:f-Electrons...100 4. 6 Problems...104 References...104 5 SymmetryandtheOpticalPropertiesofCrystals ...