Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering Forlænget returret til 31/01/25

Sub-Laplacians with Drift on Lie Groups of Polynomial Volume Growth

  • Format
  • E-bog, PDF
  • 101 sider
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Beskrivelse

We prove a parabolic Harnack inequality for a centered sub-Laplacian $L$ on a connected Lie group $G$ of polynomial volume growth by using ideas from Homogenisation theory and by adapting the method of Krylov and Safonov. We use this inequality to obtain a Taylor formula for the heat functions and thus we also obtain Harnack inequalities for their space and time derivatives. We characterise the harmonic functions which grow polynomially. We obtain Gaussian estimates for the heat kernel and estimates similar to the classical Berry-Esseen estimate. Finally, we study the associated Riesz transform operators. If $L$ is not centered, then we can conjugate $L$ by a convenient multiplicative function and obtain another centered sub-Laplacian $L_C$. Thus our results also extend to non-centered sub-Laplacians.

Læs hele beskrivelsen
Detaljer

Findes i disse kategorier...

Se andre, der handler om...

Machine Name: SAXO080