Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Sparse Graphical Modeling for High Dimensional Data

- A Paradigm of Conditional Independence Tests

  • Format
  • Bog, hardback
  • Engelsk

Beskrivelse

This book provides a general framework for learning sparse graphical models with conditional independence tests. It includes complete treatments for Gaussian, Poisson, multinomial, and mixed data; unified treatments for covariate adjustments, data integration, and network comparison; unified treatments for missing data and heterogeneous data; efficient methods for joint estimation of multiple graphical models; effective methods of high-dimensional variable selection; and effective methods of high-dimensional inference. The methods possess an embarrassingly parallel structure in performing conditional independence tests, and the computation can be significantly accelerated by running in parallel on a multi-core computer or a parallel architecture. This book is intended to serve researchers and scientists interested in high-dimensional statistics, and graduate students in broad data science disciplines.

Key Features:



A general framework for learning sparse graphical models with conditional independence tests

Complete treatments for different types of data, Gaussian, Poisson, multinomial, and mixed data

Unified treatments for data integration, network comparison, and covariate adjustment

Unified treatments for missing data and heterogeneous data

Efficient methods for joint estimation of multiple graphical models

Effective methods of high-dimensional variable selectionEffective methods of high-dimensional inference

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal130
  • Udgivelsesdato02-08-2023
  • ISBN139780367183738
  • Forlag Chapman & Hall/CRC
  • FormatHardback
Størrelse og vægt
  • Vægt780 g
  • coffee cup img
    10 cm
    book img
    15,6 cm
    23,4 cm

    Findes i disse kategorier...

    Se andre, der handler om...

    Machine Name: SAXO081