Du er ikke logget ind
Beskrivelse
As the most important parts of rotating machinery, rotors are also the most prone to mechanical vibrations, which may lead to machine failure. Correction is only possible when proper and accurate diagnosis is obtained through understanding of rotor operation and all of the potential malfunctions that may occur. Mathematical modeling, in particular modal modeling, is key to understanding observed phenomena through measured data and for predicting and preventing failure.
Rotordynamics advances simple yet adequate models of rotordynamic problems and phenomena related to rotor operation in its environment. Based on Dr. Muszy(n´)ska's extensive work at Bently Rotor Dynamics Research Corporation, world renowned for innovative and groundbreaking experiments in the field, this book provides realistic models, step-by-step experimental methods, and the principles of vibration monitoring and practical malfunction diagnostics of rotating machinery. It covers extended rotor models, rotor/fluid-related phenomena, rotor-to-stationary part rubbing, and other related problems such as nonsynchronous perturbation testing. The author also illustrates practical diagnoses of several possible malfunctions and emphasizes correct interpretation of computer-generated numerical results.
Rotordynamics is the preeminent guide to rotordynamic theory and practice. It is the most valuable tool available for anyone working on modeling rotating machinery at the machine design stage or performing further analytical and experimental research on rotating machine dynamics.