Du er ikke logget ind
Beskrivelse
Residuation Theory aims to contribute to literature in the field of ordered algebraic structures, especially on the subject of residual mappings. The book is divided into three chapters. Chapter 1 focuses on ordered sets; directed sets; semilattices; lattices; and complete lattices. Chapter 2 tackles Baer rings; Baer semigroups; Foulis semigroups; residual mappings; the notion of involution; and Boolean algebras. Chapter 3 covers residuated groupoids and semigroups; group homomorphic and isotone homomorphic Boolean images of ordered semigroups; Dubreil-Jacotin and Brouwer semigroups; and lolimorphisms. The book is a self-contained and unified introduction to residual mappings and its related concepts. It is applicable as a textbook and reference book for mathematicians who plan to learn more about the subject.