Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering Forlænget returret til 31/01/25

Probabilistic Methods for Financial and Marketing Informatics

  • Format
  • E-bog, PDF
  • Engelsk
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Beskrivelse

Probabilistic Methods for Financial and Marketing Informatics aims to provide students with insights and a guide explaining how to apply probabilistic reasoning to business problems. Rather than dwelling on rigor, algorithms, and proofs of theorems, the authors concentrate on showing examples and using the software package Netica to represent and solve problems. The book contains unique coverage of probabilistic reasoning topics applied to business problems, including marketing, banking, operations management, and finance. It shares insights about when and why probabilistic methods can and cannot be used effectively. This book is recommended for all R&D professionals and students who are involved with industrial informatics, that is, applying the methodologies of computer science and engineering to business or industry information. This includes computer science and other professionals in the data management and data mining field whose interests are business and marketing information in general, and who want to apply AI and probabilistic methods to their problems in order to better predict how well a product or service will do in a particular market, for instance. Typical fields where this technology is used are in advertising, venture capital decision making, operational risk measurement in any industry, credit scoring, and investment science. - Unique coverage of probabilistic reasoning topics applied to business problems, including marketing, banking, operations management, and finance- Shares insights about when and why probabilistic methods can and cannot be used effectively- Complete review of Bayesian networks and probabilistic methods for those IT professionals new to informatics.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal432
  • Udgivelsesdato26-07-2010
  • ISBN139780080555676
  • Forlag Elsevier Science
  • FormatPDF

Findes i disse kategorier...

Se andre, der handler om...

Machine Name: SAXO080