Du er ikke logget ind
Beskrivelse
This book is an introduction to the physical processes of cohesive sediment in the marine environment. It focuses on highly dynamic systems, such as estuaries and coastal seas. Processes on the continental shelf are also discussed and attention is given to the effects of chemistry, biology and gas.The process descriptions are based on hydrodynamic and soil mechanic principles, which integrate at the soil-water interface. This approach is substantiated through a classification scheme of sediment occurrences in which distinction is made between cohesive and granular material. Emphasis is also placed on the important interactions between turbulent flow and cohesive sediment suspensions, and on the impact of flow-induced forces on the stability of the seabed. An overview of literature on cohesive sediment dynamics is presented and a number of new developments are highlighted, in particular in relation to floc formation, settling and sedimentation, consolidation, bed failure and liquefaction and erosion of the bed. Moreover, it presents a summary on methods and techniques to measure the various sediment properties necessary to quantify the various parameters in the physical-mathematical model descriptions. A number of examples and case studies have been included.In recent years there have been exciting developments in techniques for producing multilayered structures of different materials, often with thicknesses as small as only a few atomic layers. These artificial structures, known as superlattices, can either be grown with the layers stacked in an alternating fashion (the periodic case) or according to some other well-defined mathematical rule (the quasiperiodic case). This book describes research on the excitations (or wave-like behavior) of these materials, with emphasis on how the material properties are coupled to photons (the quanta of the light or the electromagnetic radiation) to produce "mixed" waves called polaritons.