Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering Forlænget returret til 31/01/25

Multi-Sensor and Multi-Temporal Remote Sensing

- Specific Single Class Mapping

  • Format
  • E-bog, ePub
  • Engelsk
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Beskrivelse

This book elaborates fuzzy machine and deep learning models for single class mapping from multi-sensor, multi-temporal remote sensing images while handling mixed pixels and noise. It also covers the ways of pre-processing and spectral dimensionality reduction of temporal data. Further, it discusses the 'individual sample as mean' training approach to handle heterogeneity within a class. The appendix section of the book includes case studies such as mapping crop type, forest species, and stubble burnt paddy fields.Key features: Focuses on use of multi-sensor, multi-temporal data while handling spectral overlap between classes Discusses range of fuzzy/deep learning models capable to extract specific single class and separates noise Describes pre-processing while using spectral, textural, CBSI indices, and back scatter coefficient/Radar Vegetation Index (RVI) Discusses the role of training data to handle the heterogeneity within a class Supports multi-sensor and multi-temporal data processing through in-house SMIC software Includes case studies and practical applications for single class mapping This book is intended for graduate/postgraduate students, research scholars, and professionals working in environmental, geography, computer sciences, remote sensing, geoinformatics, forestry, agriculture, post-disaster, urban transition studies, and other related areas.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal178
  • Udgivelsesdato17-04-2023
  • ISBN139781000872200
  • Forlag Crc Press
  • FormatePub

Findes i disse kategorier...

Machine Name: SAXO080