Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering Forlænget returret til 31/01/25

MATLAB for Neuroscientists

- An Introduction to Scientific Computing in MATLAB

  • Format
  • Bog, hardback
  • Engelsk

Beskrivelse

MATLAB for Neuroscientists serves as the only complete study manual and teaching resource for MATLAB, the globally accepted standard for scientific computing, in the neurosciences and psychology. This unique introduction can be used to learn the entire empirical and experimental process (including stimulus generation, experimental control, data collection, data analysis, modeling, and more), and the 2nd Edition continues to ensure that a wide variety of computational problems can be addressed in a single programming environment. This updated edition features additional material on the creation of visual stimuli, advanced psychophysics, analysis of LFP data, choice probabilities, synchrony, and advanced spectral analysis. Users at a variety of levels—advanced undergraduates, beginning graduate students, and researchers looking to modernize their skills—will learn to design and implement their own analytical tools, and gain the fluency required to meet the computational needs of neuroscience practitioners.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal570
  • Udgivelsesdato27-11-2013
  • ISBN139780123838360
  • Forlag Academic Press Inc
  • FormatHardback
Størrelse og vægt
  • Vægt1360 g
  • coffee cup img
    10 cm
    book img
    19,1 cm
    23,5 cm

    Findes i disse kategorier...

    Se andre, der handler om...

    Power Children Spike Mathematics Cognitive psychology Data analysis Documentation Ion channels MATLAB Matrices Mnemonics Neural networks Action Potentials Indexing Optic nerve Principal components analysis Cognitive science Visualization Fourier series Psychophysics Attention Fourier analysis Log-linear models Reaction time Syllable State) Neuroscience Guide Bias Probability Poisson distribution Hidden Markov models Perceptron Jacobian Matrix Filtering Stochastic process Horizontal cells Output Phase Plane Analysis Postsynaptic Function Negative Feedback Parameters Exponential function ANOVA Ergodicity Fast Fourier transform Threshold Bernoulli process Probability distribution Vectors Visual stimuli Scope Functional magnetic resonance imaging Runge-Kutta method Limit cycle Neuromuscular junction Backpropagation Convolution Center Bayesian statistics Decision Models Gabor transform Scripts GET Cortical Models Long-term potentiation Fourier transform Variance Linear algebra Maximum Likelihood Brownian motion Cones Visual Search Inspector GUI Objects Motif Markov property Kinematic Discrete Wavelet Transform Code organization Criterion Set Wavelet Recursive Bayesian estimation Rhodopsin Arrays Mean Butterworth Filter Variables Morlet wavelet Periodic boundary conditions Pop out 11-cis-retinal 11-trans-retinal Absolute threshold Active neurons Alpha rhythms Advanced plotting Basic matrix algebra Basic visualization Bernoulli random variable Centered second difference Bayesian distribution Code maintenance Commenting code Beta rhythms Continuous Wavelet Transform Delta rhythms Blood oxygen level-dependent signal Diffusion drift model Chronux Classical receptive field excitatory Findall Go/No Go task Hebbian Learning Rule Free boundary conditions Global functions Gamma rhythms Hodgkin-Hukley model Generic equilibria Hyperbolic tangent function Difference of Gaussians function Hyperplane Heaviside Step Function inhibitory Downstroke Elapsed time Joint probability distribution error function Lamour frequency Event train Error rate Linear associator Mach band illusion Falling phase Ligand gated Motor cortical data Mean spike count Neural encoding Mexican Hat Wavelet Nodal source Ordinary differential equation solver Nonstationary Signals Fundamental error Ohmic resistors Gating variables Nodal sink Observation equation Refractory neurons Population vector Saddle Point Presynaptic Quiescent neurons Raster Plot Rate encoding spiral sink Simple Markov models Spatial Attention Shuffle correction Significance level spiral source Scalogram State equation Local field potential Sodium reversal potential Rising phase Spectrogram Supervised learning rule Undershoot Synaptic cleft Maximum a posteriori estimation Voltage gated Theta rhythms Tuning curve Unsupervised learning rules voxels Peri-event time histogram Neural decoding Method of limits phase analysis Poisson process model upstroke Sample covariance Posner paradigm Widrow-Hoff learning rule Probability Density Function Sigmoidal functions Visual psychophysics Resels scalar Spike density Wilson-Cowan equations Temporal encoding
    Machine Name: SAXO081