Du er ikke logget ind
Beskrivelse
Understand, design, and implement state-of-the-art mathematical and statistical applications used in finance with Python
Key Features:
Explore financial models used by the industry and ways of solving them with this guideDiscover the various features that Python provides for scientific computing and harness them to enhance your financial applicationsBuild state-of-the-art infrastructure for critical aspects such as modeling, trading, pricing, and analytics
Book Description:
Built initially for scientific computing, Python quickly found its place in finance. Its flexibility and robustness can be easily incorporated into applications for mathematical studies, research, and software development.
With this book, you will learn about all the tools you need to successfully perform research studies and modeling, improve your trading strategies, and effectively manage risks. You will explore the various tools and techniques used in solving complex problems commonly faced in finance.
You will learn how to price financial instruments such as stocks, options, interest rate derivatives, and futures using computational methods. Also, you will learn how you can perform data analytics on market indexes and use NoSQL to store tick data.
What You Will Learn:
Perform interactive computing with IPython NotebookSolve linear equations of financial models and perform ordinary least squares regressionExplore nonlinear modeling and solutions for optimum points using root-finding algorithms and solversDiscover different types of numerical procedures used in pricing optionsModel fixed-income instruments with bonds and interest ratesManage big data with NoSQL and perform analytics with HadoopBuild a high-frequency algorithmic trading platform with PythonCreate an event-driven backtesting tool and measure your strategies