Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering Forlænget returret til 31/01/25

Low-Code AI

  • Format
  • E-bog, PDF
  • Engelsk
  • 328 sider
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Beskrivelse

Take a data-first and use-casedriven approach with Low-Code AI to understand machine learning and deep learning concepts. This hands-on guide presents three problem-focused ways to learn no-code ML using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. In each case, you'll learn key ML concepts by using real-world datasets with realistic problems.Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data; feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications.You'll learn how to:Distinguish between structured and unstructured data and the challenges they presentVisualize and analyze dataPreprocess data for input into a machine learning modelDifferentiate between the regression and classification supervised learning modelsCompare different ML model types and architectures, from no code to low code to custom trainingDesign, implement, and tune ML modelsExport data to a GitHub repository for data management and governance

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal328
  • Udgivelsesdato13-09-2023
  • ISBN139781098146795
  • Forlag O'Reilly Media
  • FormatPDF

Findes i disse kategorier...

Machine Name: SAXO080