Du er ikke logget ind
Beskrivelse
The introduction of x-ray CT, twenty five years ago, revolutionised medical imaging; x-ray CT itself provided the first clear cross sectional images of the human body, with substantial contrast between different types of soft tissue. The enduring legacy of CT is however the spur that it gave to the subsequent introduction of tomographic imaging techniques into diagnostic nuclear medicine and the extraordinarily rapid development of MR over this period.This book is a non mathematical introduction to the principles underlying modern medical imaging, taking tomography as its central theme. The first three chapters cover the general principles of tomography, a survey of the atomic and nuclear physics which underpins modern imaging and a review of the key issues involved in radiation protection. The subsequent chapters deal in turn with x-ray radiography, gamma imaging, MR and ultrasound. The clinical role of diagnostic imaging is illustrated in the final chapter through the use of fictional clinical histories. Three appendices provide a more mathematical background to the tomographic method, the principles of mathematical Fourier methods and the mathematics of MR.The book is intended to provide a broad introductory background to tomographic imaging for two groups of readers; the physics or engineering undergraduate thinking of specialising in medical physics and the medical student or clinician using tomographic techniques in research and clinical practice.