Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering Forlænget returret til 31/01/25

Information Criteria and Statistical Modeling

  • Format
  • E-bog, PDF
  • Engelsk
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Beskrivelse

The Akaike information criterion (AIC) derived as an estimator of the Kullback-Leibler information discrepancy provides a useful tool for evaluating statistical models, and numerous successful applications of the AIC have been reported in various fields of natural sciences, social sciences and engineering.One of the main objectives of this book is to provide comprehensive explanations of the concepts and derivations of the AIC and related criteria, including Schwarz s Bayesian information criterion (BIC), together with a wide range of practical examples of model selection and evaluation criteria. A secondary objective is to provide a theoretical basis for the analysis and extension of information criteria via a statistical functional approach. A generalized information criterion (GIC) and a bootstrap information criterion are presented, which provide unified tools for modeling and model evaluation for a diverse range of models, including various types of nonlinear models and model estimation procedures such as robust estimation, the maximum penalized likelihood method and a Bayesian approach.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Udgivelsesdato28-09-2007
  • ISBN139780387718873
  • Forlag Springer
  • FormatPDF

Findes i disse kategorier...

Se andre, der handler om...

Machine Name: SAXO081