Du er ikke logget ind
Beskrivelse
In Silico Approach Towards Magnetic Fluid Hyperthermia in Cancer Treatment: Modeling and Simulation presents mathematical modeling and simulation approaches contrary to costly and time consuming in-vivo and in-vitro studies. Finite element method-based models of all hyperthermia processes of liver, brain and breast tumors are simulated on COMSOL Multiphysics software. Problems of constant versus variable heat sources, the backflow problem, the enhanced permeation and retention effect, the flow around Happel's sphere in cells model structure, the deformation effect in poroelastic brain tumor, 3D flow through porous tissue, the reacting nanofluid flows, and optimization of parameters have been simulated for quantitative analysis. This important reference aids in hyperthermia treatment planning in clinical applications and provides an important compendium for practitioners as well as non-medical practicing scientists and engineers and is resource for both research and medical practice in hyperthermia treatment planning in clinical applications. - Includes the diversities of cancer treatment modalities for their eradication with minimum damage to surrounding normal tissue- Addresses tumors of different organs including liver, brain and breast- Deals with mathematical modeling and simulation approaches contrary to costly and time consuming in-vivo and in-vitro studies- Provides insights on how to use hyperthermia in cancer treatments in addition to other conventional types of treatments