Du er ikke logget ind
Beskrivelse
1. Introduction.- 1.1 The Structure of the Book.- 2. Basic Relations.- 2.1 Basic Laws of Plasma Electrodynamics.- 2.2 Basic Equations for Modelling Gas Discharges.- 2.2.1 Kinetic-Model Equations.- 2.2.2 Fluid-Model Equation.- 3. Surface-Wave Propagation in Homogeneous Plasmas.- 3.1 Remarks on Classification.- 3.2 Single Plane Interface.- 3.2.1 Case of Weak Collisions (w ? v).- 3.2.2 Case of Strong Collisions (v ? w).- 3.2.3 Semi-Bounded Plasmas Overlain by a Dielectric or a Plasma.- 3.2.4 Influence of the Thermal Motion of the Electrons.- 3.3 Plasma Slabs and Plasma Columns.- 3.3.1 Plasma Slabs: Planar Waveguides.- 3.3.2 Plasma Columns: Cylindrical Waveguides.- 4. Surface-Wave Propagation in Inhomogeneous Plasmas.- 4.1 Main Aspects Treated in this Chapter.- 4.2 Inhomogeneity in the Transverse Direction.- 4.2.1 Wave-Field Equations for Plane Geometry.- 4.2.2 Influence of Thermal Electron Motion on the Resonance Absorption of Electromagnetic Surface Waves.- 4.2.3 Surface Wave Propagation Along an Inhomogeneous Plasma Slab.- 4.2.4 Surface Wave Propagation Along a Radially Inhomogeneous Plasma Column.- 4.3 Inhomogeneity in the Longitudinal Direction.- 4.3.1 Single Interface.- 4.3.2 Layered Structures.- 4.3.3 Cylindrical Geometry.- 4.3.4 Generalized Procedure for Obtaining the Geometrical-Optics Solutions4.3.4 Generalized Procedure for Obtaining the Geometrical-Optics Solutions.- 4.3.5 Numerical Results for a Single Interface and for Cylindrical Waveguides.- 4.4 Calculations with Both Transverse and Longitudinal Inhomogeneities.- 5. Fluid Theory of Surface-Wave-Produced Plasmas.- 5.1 Surface-Wave-Sustained Discharges: Nonlinear Systems Unifying Plasma and Wave Field.- 5.2 The Set of Equations.- 5.3 Ionization Nonlinearity.- 5.3.1 Electron Temperature in Terms of the Maintenance Field Intensity.- 5.3.2 Power Absorbed on Average per Electron.- 5.3.3 Ionization Frequency in Terms of the Maintenance Field Intensity.- 5.3.4 Plasma Density Expressed in Terms of the Maintenance Field Intensity.- 5.4 The Electrodynamic Part of the Problem of Maintenance of a Waveguided Discharge.- 5.5 Self-Consistent Axial Structure.- 5.5.1 Recombination-Controlled Regime.- 5.5.2 Diffusion-Controlled Regime.- 5.5.3 Comparison of the Axial Structures of Discharges in Diffusion- and Recombination-Controlled Regimes.- 5.6 Axial Density Profiles.- 5.6.1 General Relations.- 5.6.2 Discharges Maintained in a Diffusion-Controlled Regime by Joule Heating in the Volume.- 5.6.3 Discharges Maintained by Joule Heating in the Plasma Volume and in Regions of Resonance Absorption.- 6. Kinetic Numerical Modelling.- 6.1 Nonlocal Model.- 6.1.1 Boltzmann's Equation.- 6.1.2 Complementary Relations.- 6.1.3 Mean Power Absorbed per Electron.- 6.1.4 Axial Structure.- 6.1.5 Results.- 6.1.6 Axial Changes of Electric-Field Intensity.- 6.1. 7 Influence of Ponderomotive-Force Effects.- 6.2 Local Approach.- 6.2.1 Set of Equations.- 6.2.2 Essential Features.- 6.3 Transition Regime.- 7. Experimental Aspects.- 7.1 Experimental Conditions.- 7.2 Diagnostic Methods.- 7.2.1 Radiophysics Diagnostic Methods.- 7.2.2 Probe Diagnostics.- 7.2.3 Microwave Diagnostics.- 7.2.4 Optical Spectroscopy Methods.- 7.3 Summary of Observations.- 7.3.1 Observations on Basic Features.- 7.3.2 Observations Relevant to Features of Self-Consistency.- 7.4 Open Questions and Related Areas of Research.- 7.5 Applicational Aspects.- References.