Du er ikke logget ind
Beskrivelse
The G-spectrum or generative complexity of a class $\mathcal{C}$ of algebraic structures is the function $\mathrm{G}_\mathcal{C}(k)$ that counts the number of non-isomorphic models in $\mathcal{C}$ that are generated by at most $k$ elements. We consider the behavior of $\mathrm{G}_\mathcal{C}(k)$ when $\mathcal{C}$ is a locally finite equational class (variety) of algebras and $k$ is finite. We are interested in ways that algebraic properties of $\mathcal{C}$ lead to upper or lower bounds on generative complexity. Some of our results give sharp upper and lower bounds so as to place a particular variety or class of varieties at a precise level in an exponential hierarchy. We say $\mathcal{C}$ has many models if there exists $c>0$ such that $\mathrm{G}_\mathcal{C}(k) \ge 2^{2^{ck}}$ for all but finitely many $k$, $\mathcal{C}$ has few models if there is a polynomial $p(k)$ with $\mathrm{G}_\mathcal{C}(k) \le 2^{p(k)}$, and $\mathcal{C}$ has very few models if $\mathrm{G}_\mathcal{C}(k)$ is bounded above by a polynomial in $k$. Much of our work is motivated by a desire to know which locally finite varieties have few or very few models, and to discover conditions that force a variety to have many models. We present characterization theorems for a very broad class of varieties including most known and well-studied types of algebras, such as groups, rings, modules, lattices. Two main results of our work are: a full characterization of locally finite varieties omitting the tame congruence theory type 1 with very few models as the affine varieties over a ring of finite representation type, and a full characterization of finitely generated varieties omitting type 1 with few models. In particular, we show that a finitely generated variety of groups has few models if and only if it is nilpotent and has very few models if and only if it is Abelian.