Du er ikke logget ind
Beskrivelse
Chapter 1. Introduction
1.1. Biopolymers
1.5.1. Renewable polymers
1.5.2. Petroleum-based biopolymers
1.5.3. Biopolymers from mixed sources
1.2. Nanofillers
1.2.1. Nanoclay fillers
1.2.1.1. Montmorillonite (MMT) nanoclays
1.2.1.2. Halloysite nanotubes (HNTs)
1.2.1.3. Immogolite nanotubes (INTs)
1.2.2. Nanoclay modification
1.2.3. Nanoclay dispersion status
1.3. Fabrication of biopolymer/clay nanocomposites
1.4. Optimization technique and effective synthesis
1.5. Nanocomposite properties
1.5.1. Mechanical properties
1.5.2. Thermal properties
1.5.3. Biodegradability
1.5.4. Barrier properties and water absorption
Chapter 2 Experimental design, fabrication and characterization techniques
2.1. Design of Experiments (DoEs)
2.1.1. Taguchi method
2.1.2. Pareto analysis of variance (ANOVA)
2.1.3. Confirmation tests
2.2. Fabrication of bioepoxy/clay nanocomposites
2.3. Experimental characterization
2.3.1. Morphological structure analysis
2.3.1.1. X-ray diffraction (XRD) analysis
2.3.1.2. Transmission electron microscopy (TEM)
2.3.1.3. Scanning electron microscopy (SEM)
2.3.1.4. Fourier transform infrared (FTIR) analysis
2.3.2. Mechanical testing
2.3.2.1. Tensile testing
2.3.2.2. Flexural testing
2.3.2.3. Charpy impact testing
2.3.2.4. Durometer hardness testing
2.3.3. Differential scanning calorimetry (DSC)
2.3.4. Composting tests
2.3.5. Water absorption
Chapter 3 Optimization of material formulation and processing parameters of bioepoxy/clay nanocomposites
3.1. Mechanical properties of bioepoxy/clay nanocomposites based on Taguchi DoEs
3.2. Evaluation of significant factors
3.3. Preferred combination factors
3.4. Confirmation tests
3.5. Structure-property relationship
Chapter 4 Morphological structures of bioepoxy/clay nanocomposites with optimum formulation
4.1. FTIR spectra
4.2. XRD patterns
4.2.1. Effect of clay content
4.2.2. Effect of epoxidized soybean oil (ESO) content
4.3. TEM observation
4.4. SEM morphology
Chapter 5 Material properties of bioepoxy/clay nanocomposites with optimum formulation
5.1. Mechanical properties
5.2. Thermal properties
5.3. Biodegradation properties
5.3.1. Water absorption
5.3.2. Biodegradability
Chapter 6 Theoretical modeling of bioepoxy/clay nanocomposites
6.1. Theoretical models
6.1.1 Modulus of polymer particulate composites
6.1.1.1 Rule of mixture (ROM)
6.1.1.2 Modified rule of mixture (MROM)
6.1.1.3 Hirsch model
6.1.1.4 Halpin-Tsai model
6.1.1.5 Hui-Shia model
6.1.1.6 Laminate model
6.1.2. Strength of polymer particulate composites
6.1.2.1 Danusso-Tieghi (D-T) model
6.1.2.2 Nicolais-Narkis (N-N) model
6.1.2.3 Lu model
6.1.2.4 Turcsányi-Pukànszky-Tüdõs (T-P-T) model
6.2. Estimation on tensile modulus of bioepoxy/clay nanocomposites
6.2.1. The effect of clay content
6.2.2. The effect of ESO content
6.3. Estimation of tensile strength of bioepoxy/clay nanocomposites
6.3.1. The effect of clay content
6.3.2. The effect of ESO content
Chapter 7 Nanocomposite applications
7.1. Automotive applications
7.2. Material packaging applications
7.3. Medical applications
References
Appendices