Du er ikke logget ind
Beskrivelse
There are many books on various aspects of nonparametric inference such as density estimation, nonparametric regression, bootstrapping, and wavelets methods. But it is hard to ?nd all these topics covered in one place. The goal of this text is to provide readers with a single book where they can ?nd a brief account of many of the modern topics in nonparametric inference. The book is aimed at master's-level or Ph. D. -level statistics and computer science students. It is also suitable for researchersin statistics, machine lea- ing and data mining who want to get up to speed quickly on modern n- parametric methods. My goal is to quickly acquaint the reader with the basic concepts in many areas rather than tackling any one topic in great detail. In the interest of covering a wide range of topics, while keeping the book short, I have opted to omit most proofs. Bibliographic remarks point the reader to references that contain further details. Of course, I have had to choose topics to include andto omit,the title notwithstanding. For the mostpart,I decided to omit topics that are too big to cover in one chapter. For example, I do not cover classi?cation or nonparametric Bayesian inference. The book developed from my lecture notes for a half-semester (20 hours) course populated mainly by master's-level students. For Ph. D.